

Canal Current

A wave of information for Cape Coral's Canalwatch volunteers

Newsletter: 4th Quarter 2010

Environmental News

Native Plant profile

All About Manatees

The opportunity to see manatees at Manatee Park is greater now with the cooler weather settling in. Manatee Park, located off Palm Beach Blvd in Fort Myers, is now offering a free half hour program any day of the week all month long about the Florida Manatee. Appropriate for all ages, this program is a look into the biological and ecological nature of this threatened marine mammal. If you have visitors from out of town, or if you're looking for something to do with the kids or grandkids, Manatee Park is a local attraction not to be missed.

For more information please visit leeparks.org or call Nancy Kilmartin at 239-690-5030

Cape Coral has its share of manatee sightings, so please heed "idle speed" and "no wake" zones throughout the canals and surrounding waterways.

Inside This Issue:

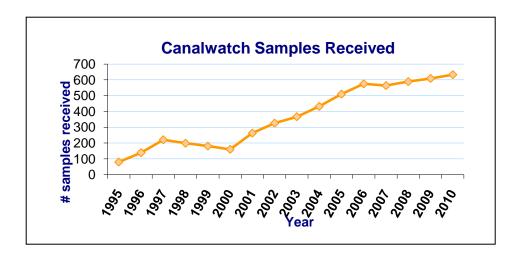
Native Plants 1
News 2
Extra Field Data 3
Lab Data 4-5
Upcoming Events 6

Questions? Comments? Let us know!

(239)574-0785

Harry: hphillips@capecoral.net Kim: kcressman@capecoral.net

Coastal Plain Willow Salix caroliniana


This small willow can be found in wet areas such as river and canal banks, but also in low lying areas around swamps and wetlands. Its native range includes much of the Southeast United States and Florida. The coastal plain willow prefers full sun and provides a very distinct green leaf color amongst other foliage, and much like other willows, it is deciduous. Seeds are a mass of silky threads that are distributed by the wind.

The coastal plain willow is a fast growing tree that will provide habitat for birds, but may be overly wild for tight areas in the yard. Using it as an accent tree amongst a hedge, with occasional pruning is the best application for this distinctive tree.

2010 Year in Review

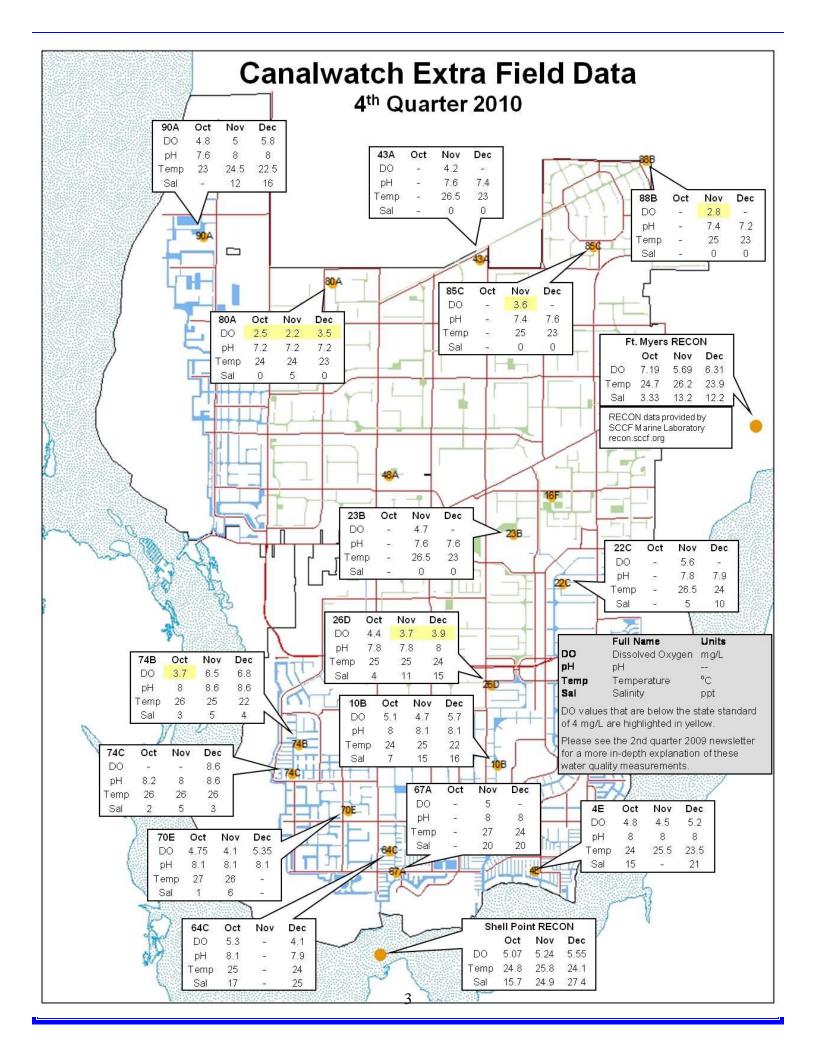
- In 2010, we received 633 Canalwatch samples! This is an increase from 609 in 2009. Thank you for your participation!
- We trained 9 new volunteers this year. Welcome!
- There are currently 72 active stations.

Data Reports Available

We recently completed a couple of reports using Canalwatch data:

- 1. A 5-year analysis of nutrient concentrations at several sites from 2005-2009.
- 2. Maps of Chlorophyll results. Chlorophyll samples have been collected since March of 2010. The FL state standards for chlorophyll say that it should not exceed 11 ug/L in estuaries or 20 ug/L in freshwaters.

There are two ways to get these reports:


- 1. From the website www.capecoral.net; put Canalwatch in the search box.
- 2. Request a hard copy by calling 574-0785.

Fertilizer Ordinance

On November 29, 2010, the City of Cape Coral enacted an ordinance regulating the use of fertilizers in the City. For details, please see the website, www.capecoral.net, or call (239) 574-0745.

Farewell

After four years with the City, I'm moving to Mississippi to work at Grand Bay National Estuarine Research Reserve. I've learned a lot here. Thank you all for your interest, enthusiasm, and support along the way. Fishing line recycling and the Canal Cleanup will still continue, and Canalwatch is in good hands with Harry. It's been a pleasure working with you all, and I wish you the best in the future! - Kim

Canalwatch Lab Data, 4th quarter 2010																			
	bd = below detection benchmark numbers: Marked data are in the highest 20% of values found by Hand et. al, 1988.																		
	October 2010			November 2010					December 2010										
	Secchi	NO 3	NH 3	TKN	T-N	T-PO4		NO 3	NH 3	TKN	T-N	T-PO4		NO 3	NH 3	TKN	T-N	T-PO4	Avg
	(inches)	<1.0	none		<2.0		(inches)	<1.0	1	set	<2.0	<0.46	(inches)	<1.0	1	e set	<2.0	<0.46	TSI
3F	73 b	bd	bd 	0.1	0.10	0.07		bd 	bd	0.1	0.10	0.06	76 b	0.22	0.1	0.1	0.32	0.08	18.11
4E	38	bd	bd	0.5	0.50	0.09	50	bd	bd	0.30	0.30	0.07	53 b	0.28	0.10	0.10	0.38	0.03	45.01
6F	36.5	bd	bd	0.70	0.70	0.11	47	bd	bd	0.4	0.40	0.09	36	0.17	0.1	0.5	0.67	0.05	52.94
6H	25	bd	bd	0.5	0.50	0.12	-	-	-	-	-	-	-	-	-	-	-	-	57.95
7B	36	bd	bd	0.5	0.50	0.08	52 b	bd	bd	0.3	0.30	0.08	55 b	0.28	bd	bd	0.28	0.03	38.48
7C	58 b	bd	bd	0.4	0.40	0.07	52 b	bd	bd	0.2	0.20	0.08	55 b	0.32	bd	0.4	0.72	0.03	36.39
10B 11D	48	bd	bd	0.30	0.30	0.05	53 b	bd	bd	0.3	0.30	0.04	51	0.28	bd	0.1	0.38	bd	37.87
-	48 b	bd	bd	0.6	0.60	0.08	53 b	- hd	- bd	-	- 0.40	- 0.05	55 b	0.26	bd	0.5	0.76	0.03	46.80
15D 15E	40 33 b	bd	bd	0.6	0.60	0.09	40 b	bd	bd bd	0.1	0.10	0.05	38.5 b	0.23 bd	bd bd	0.10	0.33	bd bd	29.18
16E		0.06 bd	bd bd	0.6	0.66	0.09	35.5 b	bd bd	bd	0.3	0.30	0.08	40 b	bd		0.5	0.50		34.79
16F	23 b	bd	bd	0.50	0.50	0.03	14.5 b	bd	bd	0.60	0.60	0.02 bd	17.5 b		0.2	0.6	0.60	0.06	45.66
	15 b	bd	bd	0.6	0.60	0.02	12 b	bd	bd	0.6	0.60		-	- bd	- bd	-	-	- bd	33.02
16G 17B	56	bu	bu	0.6	0.60	0.03	38 30.5	bd	bd	0.7	0.70	0.04	36.25		bu	0.6	0.60	bu	48.72
18G	32	bd	bd	-	0.80	0.04	26.5	bd	bd	1	1.00	0.04	28.75	- bd	bd	0.6	0.60	bd	59.28
18H	-	- Du	bu	0.8	0.80	0.04	20.5	bu	bu	1	1.00	0.05	28.75	bd	bd	0.6	0.60	bd	56.34
19D	25	bd	bd	0.80	0.80	0.10	39 b	bd	bd	0.6	0.60	0.09	42 b	0.06	bd	0.4	0.40	0.06	24.43
21D	27 b	bd	bd	0.60	0.60	0.10	39 b	bd	bd	0.6	0.50	0.09	34 b	bd	bd	0.3	0.30	0.05	48.09
21F	-		<u>-</u>	-	-	-	77 b	bd	bd	0.7	0.70	0.08	84 b	bd	bd	0.4	0.40	0.03	43.99 43.73
22C	-					<u>-</u>	30 b	bd	bd	1.5	1.50	0.07	24 b	bd	0.1	0.7	0.70	0.03	54.62
23B							38 b	0.19	bd	1.9	2.09	0.07	40 b	0.12	0.10	0.90	1.02	bd	
26C	22	bd	bd	0.5	0.50	0.03	-	0.13	-	-	-	0.00		-	-	-	-	-	34.65 60.51
26D	32	bd	bd	2.3	2.30	0.10	40	bd	bd	1.7	1.70	0.06	31	bd	0.1	1	1.00	bd	58.16
26F	-	-	_	_	-	-	52 b	bd	bd	0.40	0.40	0.04	52	bd	bd	0.2	0.20	bd	41.01
28D	26	0.08	bd	1.3	1.38	0.04	30	0.19	bd	1.30	1.49	0.08	27	0.11	0.20	1.30	1.41	bd	58.34
30A	36	bd	bd	0.6	0.60	0.06	4	bd	bd	0.36	0.36	0.04	61	0.06	bd	0.2	0.26	bd	58.76
35A	48 b	0.05	bd	0.6	0.65	bd	34 b	0.10	bd	0.5	0.60	0.02	-	-	-	-	-	-	33.02
35B	44.5 b	0.05	bd	0.7	0.75	0.03	-	-	_	-	-	-	_		_	_	_	_	47.58
41A	25 b	0.05	bd	0.5	0.55	bd	19 b	0.14	bd	0.6	0.74	bd	20 b	0.15	bd	0.40	0.55	bd	24.43
43A	-	-	-	-	-	-	27 b	0.08	bd	1.2	1.28	0.07	30 b	0.12	0.10	0.90	1.02	bd	42.59
45D	32	bd	bd	0.80	0.80	0.04	28	bd	bd	1.00	1.00	0.05	-	bd	0.1	0.4	0.40	0.04	55.10
48A	59	bd	bd	0.5	0.50	bd	60 b	bd	bd	0.7	0.70	0.02	61 b	0.06	0.1	0.1	0.16	bd	31.85
51A		bd	bd	0.70	0.70	0.12		bd	bd	0.5	0.50	0.03		bd	bd	0.40	0.40	0.02	43.37
52B	70 b	0.06	bd	0.60	0.66	0.02	57	0.05	bd	0.8	0.85	0.03	58	0.09	0.20	0.9	0.99	bd	40.86
55B	30	bd	bd	0.7	0.70	0.06	43 b	bd	bd 4	0.8	0.80	0.05	-	-	-	-	-	-	56.86
55B	30	bd	bd	0.7	0.70	0.06	43 b	bd	bd 4	8.0	0.80	0.05	-	-	-	-	-	-	5

Secch	ni Depth, in	ches.	TKN:	= Total Kje	eldahl	High I	evels of r	nutrients	in our c	anals					ex a qui				
Max		0.08	0.00	2.30	2.30	0.12		0.19	0.10	1.90	2.09	0.09		0.32	0.30	1.30	1.41	0.08	60.51
Median		0.06	#NUM!	0.50	0.55	0.06		0.08	0.10	0.60	0.60	0.05		0.11	0.10	0.40	0.40	0.03	43.73
	Secchi	NO 3	NH 3	TKN	T-N	T-PO4	Secchi	NO 3	NH 3	TKN	T-N	T-PO4	Secchi	NO 3	NH 3	TKN	T-N	T-PO4	TSI
97A	51 b	bd	bd	0.9	0.90	0.03	41 b	bd	bd	0.7	0.70	0.03	37 b	0.05	bd	0.6	0.65	bd	45.88
93B	39	bd	bd	0.3	0.30	0.03	33	bd	bd	0.8	0.80	0.04	45	bd	bd	0.3	0.30	0.02	53.75
91B	34.5 b	bd	bd	0.6	0.60	bd	30.75 b	bd	bd	0.4	0.40	bd	28.5 b	0.08	bd	0.6	0.68	bd	24.43
90A 91A	42 60 b	bd	bd	0.6	0.60	0.02 bd	60 b	bd	bd	0.9	0.90	0.03 bd	42 59 b	0.08	bd	0.5	0.50	0.02 bd	49.73 24.43
90A	42	- bd	- bd	0.6	0.60	0.02	48 45	0.05 bd	bd bd	1.1 0.9	0.90	0.03	60 42	0.14 bd	0.10	1.2 0.5	1.34 0.50	0.02	45.90
85C	-	-	-	-	-	-	69 b	bd	bd	1.3	1.30	bd	70 b	0.09	bd	0.9	0.99	bd	24.43
83A	50.5	bd	bd	0.50	0.50	0.03	50	bd	0.1	0.5	0.50	0.03	61.5	bd	bd	0.4	0.40	bd	43.92
82A	-	-	-	-	-	-	42	bd	0.1	0.6	0.60	0.03	48	bd	0.1	0.9	0.90	bd	45.48
80A	102 b	bd	bd	0.4	0.40	bd	104	bd	bd	0.4	0.40	bd	89 b	bd	bd	bd	bd	bd 	20.80
74D	28	bd	bd	0.5	0.50	0.05	30	bd	bd	0.7	0.70	0.05	39	bd	bd	0.7	0.70	bd	53.84
74C	33	bd	bd	0.50	0.50	0.06	36	bd	bd	0.60	0.60	0.04	46	bd	bd	0.5	0.50	bd	49.68
74B	35	bd	bd	0.7	0.70	0.07	33.5	bd	bd	0.7	0.70	0.04	33.5	bd	bd	0.6	0.60	bd	52.69
72A	66	bd	bd	0.4	0.40	0.06	61	bd	bd	0.6	0.60	0.04	52	bd	bd	0.2	0.20	bd	42.20
70F	-	=	-	-	-	-	-	-	-	-	-	-	37.5	bd	bd	0.4	0.40	0.08	49.66
70E	40	bd	bd	0.3	0.30	0.06	38	bd	bd	1.1	1.10	0.08	34	bd	bd	0.3	0.30	bd	50.99
69A	-	-	-	-	-	-	37.25 b	bd	bd	0.7	0.70	0.05	39.25 b	bd	0.1	0.4	0.40	0.05	51.65
67C	52	bd	bd	0.1	0.10	0.07	68	bd	bd	0.2	0.20	0.07	88	bd	bd	bd	bd	0.02	27.06
67A	-	-	-	-	-	-	72 b	0.06	bd	1.4	1.46	0.08	66 b	0.11	0.2	0.4	0.51	0.05	55.91
66A	-	-	-	-	-	-	-	-	-	-	-	-	27 b	bd	bd	0.8	0.80	bd	24.43
65B	13 b	0.05	bd	0.5	0.55	0.09	38 b	0.06	bd	0.3	0.36	0.08	21	0.09	0.1	0.1	0.19	0.04	43.64
64C	96 b	bd	bd	0.1	0.10	0.08	-	-	-	-	-	-	103 b	0.11	bd	bd	0.11	0.02	11.36
64B	59 b	bd	bd	0.20	0.20	0.10	79 b	0.05	bd	0.10	0.15	0.07	82 b	0.07	bd	bd	bd	0.05	17.63
59B	47	bd	bd	0.30	0.30	0.03	71	bd	bd	0.5	0.50	0.05	87 56	bd bd	0.1	0.1 bd	0.1 bd	bd bd	38.98 37.69
581	50	bd	bd	0.4	0.40	0.03	89	bd	- bd	0.5	0.50	0.05			-	_			32.11
58G	57.5 b	bd	bd	0.4	0.40	0.03	- -	- -	-	-	-	0.05	40 b	bd	0.3	0.2	0.20	bd	38.59
58E 58F	37.5 b	bd	- bd	0.4	0.40	0.03	65 b 39 b	bd bd	0.1	0.3	0.30	0.03	40 b	bd	0.3	0.2	0.20	bd	38.51
58B	-	-	-	-	-	-	- 05 h	- h al	- h al	-	-	-	36.43	bd	0.1	0.2	0.20	0.02	46.53
57A	46.5 b	0.06	bd	0.5	0.56	0.02	47 b	0.11	bd	0.6	0.71	bd	47 b	0.07	bd	0.3	0.37	bd	29.93

Secchi Depth, inches. b: disk visible on bottom	TKN = Total Kjeldahl Nitrogen (organic + NH ⁴)
NO ³ = Nitrate (inorganic)	TN = Total Nitrogen (inorganic + organic)
NH³ = Ammonia (inorganic)	TPO¹ = Total Phosphate

High levels of nutrients in our canals can indicate the presence of fertilizer runoff or effluent from wastewater or septic systems. Excessive nutrients can lead to nuisance plant growth and algal blooms.

TSI = Trophic State Index, a quick indicator of canal health.
63 sites this quarter scored as GOOD (<60). 1 site scored FAIR
(60-70), and none were POOR (>70).

This is an improvement over last quarter and about the same as 4th quarter 2009.

All nutrient concentrations shown in mg/L

January	February	March
5 th Canalwatch	2 nd Canalwatch	2 nd Canalwatch
5 th Sunset Celebration Yacht Club Pier 4-7pm	2 nd Sunset Celebration Yacht Club Pier 4-7pm	2 nd Sunset Celebration Yacht Club Pier 4-7pm
11 th Friends of Wildlife Meeting at Rotary Park 7-9pm info: 980-2593	8 th Friends of Wildlife Meeting at Rotary Park 7-9pm info: 980-2593	8 th Friends of Wildlife Meeting at Rotary Park 7-9pm info: 980-2593
15 th Nature Tour of Cape Coral, 8am-12pm Tour begins at Rotary Park Info: 549-4606 17 th Martin Luther King Holiday All month long All about Manatees Manatee Park, Fort Myers	21 st President's Day 26 th Burrowing Owl Festival 10am – 4pm Rotary Park	19 th Florida Friendly Yards Tour 9am-12pm, tour begins at Rotary Park Info: 549-4606 20 th Canal Cleanup 8am-12pm Yacht Club Pavilion Info: 574-0785
21 st Florida Yards and Neighborhoods intro class 1pm-4pm at Rotary Park Info: 549-4606		

City of Cape Coral Environmental Resources P.O. BOX 150027 Cape Coral, FL 33915-0027